Standardize metadata on-the-fly#

This use cases runs on a LaminDB instance with populated CellType and Pathway registries. Make sure you run CellTypist and GO Ontology notebooks before executing this use case.

Here, we demonstrate how to standardize the metadata on-the-fly during cell type annotation and pathway enrichment analysis using these two registries.

For more information, see:

!lamin load use-cases-registries
import lamindb as ln
import lnschema_bionty as lb
from lamin_usecases import datasets as ds
import scanpy as sc
import matplotlib.pyplot as plt
import celltypist
import gseapy as gp
sc.settings.set_figure_params(dpi=80, facecolor="white")
lb.settings.organism = "human"
ln.track()

An interferon-beta treated dataset#

A small peripheral blood mononuclear cell dataset that is split into control and stimulated groups. The stimulated group was treated with interferon beta.

Let’s load the dataset and perform some preprocessing:

adata = ds.anndata_seurat_ifnb(preprocess=False, populate_registries=True)
adata
sc.pp.normalize_total(adata, target_sum=1e4)
sc.pp.log1p(adata)
sc.pp.highly_variable_genes(adata, n_top_genes=2000)
sc.pp.pca(adata, n_comps=20)
sc.pp.neighbors(adata, n_pcs=10)
sc.tl.umap(adata)

Analysis: cell type annotation using CellTypist#

model = celltypist.models.Model.load(model="Immune_All_Low.pkl")
predictions = celltypist.annotate(
    adata, model="Immune_All_Low.pkl", majority_voting=True
)
adata.obs["cell_type_celltypist"] = predictions.predicted_labels.majority_voting
lb.CellType.inspect(adata.obs["cell_type_celltypist"]);
adata.obs["cell_type_celltypist"] = lb.CellType.standardize(
    adata.obs["cell_type_celltypist"]
)
sc.pl.umap(
    adata,
    color=["cell_type_celltypist", "stim"],
    frameon=False,
    legend_fontsize=10,
    wspace=0.4,
)

Analysis: Pathway enrichment analysis using Enrichr#

This analysis is based on the GSEApy scRNA-seq Example.

First, we compute differentially expressed genes using a Wilcoxon test between stimulated and control cells.

# compute differentially expressed genes
sc.tl.rank_genes_groups(
    adata,
    groupby="stim",
    use_raw=False,
    method="wilcoxon",
    groups=["STIM"],
    reference="CTRL",
)

rank_genes_groups_df = sc.get.rank_genes_groups_df(adata, "STIM")
rank_genes_groups_df.head()

Next, we filter out up/down-regulated differentially expressed gene sets:

degs_up = rank_genes_groups_df[
    (rank_genes_groups_df["logfoldchanges"] > 0)
    & (rank_genes_groups_df["pvals_adj"] < 0.05)
]
degs_dw = rank_genes_groups_df[
    (rank_genes_groups_df["logfoldchanges"] < 0)
    & (rank_genes_groups_df["pvals_adj"] < 0.05)
]

degs_up.shape, degs_dw.shape

Run pathway enrichment analysis on DEGs and plot top 10 pathways:

enr_up = gp.enrichr(degs_up.names, gene_sets="GO_Biological_Process_2023").res2d
gp.dotplot(enr_up, figsize=(2, 3), title="Up", cmap=plt.cm.autumn_r);
enr_dw = gp.enrichr(degs_dw.names, gene_sets="GO_Biological_Process_2023").res2d
gp.dotplot(enr_dw, figsize=(2, 3), title="Down", cmap=plt.cm.winter_r);

Register analyzed dataset and annotate with metadata#

Register new features and labels (check out more details here):

new_features = ln.Feature.from_df(adata.obs)
ln.save(new_features)
new_labels = [ln.ULabel(name=i) for i in adata.obs["stim"].unique()]
ln.save(new_labels)
features = ln.Feature.lookup()

Register dataset using a Artifact object:

artifact = ln.Artifact.from_anndata(
    adata, description="seurat_ifnb_activated_Bcells", field=lb.Gene.symbol
)
artifact.save()

Querying metadata#

artifact.describe()

Querying cell types#

Querying for cell types contains “B cell” in the name:

lb.CellType.filter(name__contains="B cell").df().head()

Querying for all artifacts annotated with a cell type:

celltypes = lb.CellType.lookup()
celltypes.tem_trm_cytotoxic_t_cells
ln.Artifact.filter(cell_types=celltypes.tem_trm_cytotoxic_t_cells).df()

Querying pathways#

Querying for pathways contains “interferon-beta” in the name:

lb.Pathway.filter(name__contains="interferon-beta").df()

Query pathways from a gene:

lb.Pathway.filter(genes__symbol="KIR2DL1").df()

Query artifacts from a pathway:

ln.Artifact.filter(feature_sets__pathways__name__icontains="interferon-beta").first()

Query featuresets from a pathway to learn from which geneset this pathway was computed:

pathway = lb.Pathway.filter(ontology_id="GO:0035456").one()
pathway
degs = ln.FeatureSet.filter(pathways__ontology_id=pathway.ontology_id).one()

Now we can get the list of genes that are differentially expressed and belong to this pathway:

contributing_genes = pathway.genes.all() & degs.genes.all()
contributing_genes.list("symbol")
# clean up test instance
!lamin delete --force use-cases-registries
!rm -r ./use-cases-registries