Cell marker#

lamindb provides access to the following public cell marker ontologies through lnschema-bionty:

  1. CellMarker

Here we show how to access and search cell marker ontologies to standardize new data.

Setup#

!lamin init --storage ./test-cell-marker --schema bionty
✅ saved: User(uid='DzTjkKse', handle='testuser1', name='Test User1', updated_at=2023-12-22 16:53:43 UTC)
✅ saved: Storage(uid='tJwb4IJ7', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-cell-marker', type='local', updated_at=2023-12-22 16:53:43 UTC, created_by_id=1)
💡 loaded instance: testuser1/test-cell-marker
💡 did not register local instance on hub
import lnschema_bionty as lb
import pandas as pd

# adds an entry "human" into an empty instance
lb.settings.organism = "human"
💡 loaded instance: testuser1/test-cell-marker

Bionty objects#

Let us create a public knowledge accessor with bionty(), which chooses a default public knowledge source from BiontySource. It’s a Bionty object, which you can think about as a less-capable registry:

cell_marker_bt = lb.CellMarker.bionty()
cell_marker_bt
CellMarker
Organism: human
Source: cellmarker, 2.0
#terms: 15466

📖 CellMarker.df(): ontology reference table
🔎 CellMarker.lookup(): autocompletion of terms
🎯 CellMarker.search(): free text search of terms
✅ CellMarker.validate(): strictly validate values
🧐 CellMarker.inspect(): full inspection of values
👽 CellMarker.standardize(): convert to standardized names
🪜 CellMarker.diff(): difference between two versions
🔗 CellMarker.ontology: Pronto.Ontology object

As for registries, you can export the ontology as a DataFrame:

df = cell_marker_bt.df()
df.head()
name synonyms gene_symbol ncbi_gene_id uniprotkb_id
0 A1BG A1BG 1 P04217
1 A2M A2M 3494 None
2 A2ML1 A2ML1 144568 A8K2U0
3 A4GALT A4GALT 53947 A0A0S2Z5J1
4 AADAC AADAC 13 P22760

Unlike registries, you can also export it as a Pronto object via cell_marker_bt.ontology.

Look up terms#

As for registries, terms can be looked up with auto-complete:

lookup = cell_marker_bt.lookup()

The . accessor provides normalized terms (lower case, only contains alphanumeric characters and underscores):

lookup.immp1l
CellMarker(name='IMMP1L', synonyms='', gene_symbol='IMMP1L', ncbi_gene_id='196294', uniprotkb_id='Q96LU5')

To look up the exact original strings, convert the lookup object to dict and use the [] accessor:

lookup_dict = lookup.dict()
lookup_dict["IMMP1L"]
CellMarker(name='IMMP1L', synonyms='', gene_symbol='IMMP1L', ncbi_gene_id='196294', uniprotkb_id='Q96LU5')

Search terms#

Search behaves in the same way as it does for registries:

cell_marker_bt = lb.CellMarker.bionty()
cell_marker_bt.search("CD4").head(5)
synonyms gene_symbol ncbi_gene_id uniprotkb_id __ratio__
name
Cd4 CD4 920 B4DT49 100.0
CD4+ None None None 100.0
CD45RB None None None 90.0
CD45RO None None None 90.0
CD44R None None None 90.0

Search another field (default is .name):

cell_marker_bt.search("CD4", field=cell_marker_bt.gene_symbol).head(1)
name synonyms ncbi_gene_id uniprotkb_id __ratio__
gene_symbol
CD4 Cd4 920 B4DT49 100.0

Standardize cell marker identifiers#

Let us generate a DataFrame that stores a number of cell markers identifiers, some of which corrupted:

markers = pd.DataFrame(
    index=[
        "KI67",
        "CCR7",
        "CD14",
        "CD8",
        "CD45RA",
        "CD4",
        "CD3",
        "CD127a",
        "PD1",
        "Invalid-1",
        "Invalid-2",
        "CD66b",
        "Siglec8",
        "Time",
    ]
)

Now let’s check which cell markers can be found in the reference:

cell_marker_bt.inspect(markers.index, cell_marker_bt.name);
8 terms (57.10%) are not validated for name: KI67, CCR7, CD14, CD4, CD127a, Invalid-1, Invalid-2, Time
   detected 4 terms with inconsistent casing/synonyms: KI67, CCR7, CD14, CD4
→  standardize terms via .standardize()

Logging suggests to map synonyms:

synonyms_mapper = cell_marker_bt.standardize(markers.index, return_mapper=True)
synonyms_mapper
{'KI67': 'Ki67', 'CCR7': 'Ccr7', 'CD14': 'Cd14', 'CD4': 'Cd4'}

Let’s replace the synonyms with standardized names in the DataFrame:

markers.rename(index=synonyms_mapper, inplace=True)

The Time, Invalid-1 and Invalid-2 are non-marker channels which won’t be curated by cell marker:

cell_marker_bt.inspect(markers.index, cell_marker_bt.name);
4 terms (28.60%) are not validated for name: CD127a, Invalid-1, Invalid-2, Time

We don’t find CD127a, let’s check in the lookup with auto-completion:

lookup = cell_marker_bt.lookup()
lookup.cd127
CellMarker(name='CD127', synonyms='', gene_symbol='IL7R', ncbi_gene_id='3575', uniprotkb_id='P16871', _5='cd127')

It should be cd127, we had a typo there with cd127a:

curated_df = markers.rename(index={"CD127a": lookup.cd127.name})

Optionally, search:

cell_marker_bt.search("CD127a").head()
synonyms gene_symbol ncbi_gene_id uniprotkb_id __agg__ __ratio__
name
CD127 IL7R 3575 P16871 cd127 90.909091
CD1 CD1A 910 P29016 cd1 90.000000
CD172a None None None cd172a 83.333333
CD167a None None None cd167a 83.333333
CD121a None None None cd121a 83.333333

Now we see that all cell marker candidates validate:

cell_marker_bt.validate(curated_df.index, cell_marker_bt.name);
3 terms (21.40%) are not validated: Invalid-1, Invalid-2, Time

Ontology source versions#

For any given entity, we can choose from a number of versions:

lb.BiontySource.filter(entity="CellMarker").df()
uid entity organism currently_used source source_name version url md5 source_website updated_at created_by_id
id
18 vqWI CellMarker human True cellmarker CellMarker 2.0 s3://bionty-assets/human_cellmarker_2.0_CellMa... d565d4a542a5c7e7a06255975358e4f4 http://bio-bigdata.hrbmu.edu.cn/CellMarker 2023-12-22 16:53:43.617544+00:00 1
19 ypPK CellMarker mouse True cellmarker CellMarker 2.0 s3://bionty-assets/mouse_cellmarker_2.0_CellMa... 189586732c63be949e40dfa6a3636105 http://bio-bigdata.hrbmu.edu.cn/CellMarker 2023-12-22 16:53:43.617579+00:00 1

When instantiating a Bionty object, we can choose a source or version:

bionty_source = lb.BiontySource.filter(
    source="cellmarker", version="2.0", organism="human"
).one()
cell_marker_bt = lb.CellType(bionty_source=bionty_source)
cell_marker_bt
CellType(uid='6aqH4ddb', name='', bionty_source_id=18, created_by_id=1)

The currently used ontologies can be displayed using:

lb.BiontySource.filter(currently_used=True).df()
uid entity organism currently_used source source_name version url md5 source_website updated_at created_by_id
id
1 zvGR Organism vertebrates True ensembl Ensembl release-110 https://ftp.ensembl.org/pub/release-110/specie... f3faf95648d3a2b50fd3625456739706 https://www.ensembl.org 2023-12-22 16:53:43.616936+00:00 1
4 TE9h Organism bacteria True ensembl Ensembl release-57 https://ftp.ensemblgenomes.ebi.ac.uk/pub/bacte... ee28510ed5586ea7ab4495717c96efc8 https://www.ensembl.org 2023-12-22 16:53:43.617062+00:00 1
5 OZIG Organism fungi True ensembl Ensembl release-57 http://ftp.ensemblgenomes.org/pub/fungi/releas... dbcde58f4396ab8b2480f7fe9f83df8a https://www.ensembl.org 2023-12-22 16:53:43.617097+00:00 1
6 W07m Organism metazoa True ensembl Ensembl release-57 http://ftp.ensemblgenomes.org/pub/metazoa/rele... 424636a574fec078a61cbdddb05f9132 https://www.ensembl.org 2023-12-22 16:53:43.617133+00:00 1
7 AVh3 Organism plants True ensembl Ensembl release-57 https://ftp.ensemblgenomes.ebi.ac.uk/pub/plant... eadaa1f3e527e4c3940c90c7fa5c8bf4 https://www.ensembl.org 2023-12-22 16:53:43.617167+00:00 1
8 MdBu Organism all True ncbitaxon NCBItaxon Ontology 2023-06-20 s3://bionty-assets/df_all__ncbitaxon__2023-06-... 00d97ba65627f1cd65636d2df22ea76c https://github.com/obophenotype/ncbitaxon 2023-12-22 16:53:43.617201+00:00 1
9 o36k Gene human True ensembl Ensembl release-110 s3://bionty-assets/df_human__ensembl__release-... 832f3947e83664588d419608a469b528 https://www.ensembl.org 2023-12-22 16:53:43.617235+00:00 1
11 VTEw Gene mouse True ensembl Ensembl release-110 s3://bionty-assets/df_mouse__ensembl__release-... fa4ce130f2929aefd7ac3bc8eaf0c4de https://www.ensembl.org 2023-12-22 16:53:43.617304+00:00 1
13 Uhnp Gene saccharomyces cerevisiae True ensembl Ensembl release-110 s3://bionty-assets/df_saccharomyces cerevisiae... 2e59495a3e87ea6575e408697dd73459 https://www.ensembl.org 2023-12-22 16:53:43.617373+00:00 1
14 000Q Protein human True uniprot Uniprot 2023-03 s3://bionty-assets/df_human__uniprot__2023-03_... 1c46e85c6faf5eff3de5b4e1e4edc4d3 https://www.uniprot.org 2023-12-22 16:53:43.617407+00:00 1
16 tD7O Protein mouse True uniprot Uniprot 2023-03 s3://bionty-assets/df_mouse__uniprot__2023-03_... 9d5e9a8225011d3218e10f9bbb96a46c https://www.uniprot.org 2023-12-22 16:53:43.617475+00:00 1
18 vqWI CellMarker human True cellmarker CellMarker 2.0 s3://bionty-assets/human_cellmarker_2.0_CellMa... d565d4a542a5c7e7a06255975358e4f4 http://bio-bigdata.hrbmu.edu.cn/CellMarker 2023-12-22 16:53:43.617544+00:00 1
19 ypPK CellMarker mouse True cellmarker CellMarker 2.0 s3://bionty-assets/mouse_cellmarker_2.0_CellMa... 189586732c63be949e40dfa6a3636105 http://bio-bigdata.hrbmu.edu.cn/CellMarker 2023-12-22 16:53:43.617579+00:00 1
20 2Zjk CellLine all True clo Cell Line Ontology 2022-03-21 https://data.bioontology.org/ontologies/CLO/su... ea58a1010b7e745702a8397a526b3a33 https://bioportal.bioontology.org/ontologies/CLO 2023-12-22 16:53:43.617620+00:00 1
21 4shh CellType all True cl Cell Ontology 2023-08-24 http://purl.obolibrary.org/obo/cl/releases/202... 46e7dd89421f1255cf0191eca1548f73 https://obophenotype.github.io/cell-ontology 2023-12-22 16:53:43.617654+00:00 1
25 LmWQ Tissue all True uberon Uberon multi-species anatomy ontology 2023-09-05 http://purl.obolibrary.org/obo/uberon/releases... abcee3ede566d1311d758b853ccdf5aa http://obophenotype.github.io/uberon 2023-12-22 16:53:43.617790+00:00 1
29 zMWv Disease all True mondo Mondo Disease Ontology 2023-08-02 http://purl.obolibrary.org/obo/mondo/releases/... 7f33767422042eec29f08b501fc851db https://mondo.monarchinitiative.org 2023-12-22 16:53:43.617925+00:00 1
33 cxPr Disease human True doid Human Disease Ontology 2023-03-31 http://purl.obolibrary.org/obo/doid/releases/2... 64f083a1e47867c307c8eae308afc3bb https://disease-ontology.org 2023-12-22 16:53:43.618061+00:00 1
35 2wto ExperimentalFactor all True efo The Experimental Factor Ontology 3.57.0 http://www.ebi.ac.uk/efo/releases/v3.57.0/efo.owl 2ecafc69b3aba7bdb31ad99438505c05 https://bioportal.bioontology.org/ontologies/EFO 2023-12-22 16:53:43.618129+00:00 1
37 3SSF Phenotype human True hp Human Phenotype Ontology 2023-06-17 https://github.com/obophenotype/human-phenotyp... 65e8d96bc81deb893163927063b10c06 https://hpo.jax.org 2023-12-22 16:53:43.618197+00:00 1
40 nwdt Phenotype mammalian True mp Mammalian Phenotype Ontology 2023-05-31 https://github.com/mgijax/mammalian-phenotype-... be89052cf6d9c0b6197038fe347ef293 https://github.com/mgijax/mammalian-phenotype-... 2023-12-22 16:53:43.618297+00:00 1
41 zAfB Phenotype zebrafish True zp Zebrafish Phenotype Ontology 2022-12-17 https://github.com/obophenotype/zebrafish-phen... 03430b567bf153216c0fa4c3440b3b24 https://github.com/obophenotype/zebrafish-phen... 2023-12-22 16:53:43.618331+00:00 1
43 p1co Phenotype all True pato Phenotype And Trait Ontology 2023-05-18 http://purl.obolibrary.org/obo/pato/releases/2... bd472f4971492109493d4ad8a779a8dd https://github.com/pato-ontology/pato 2023-12-22 16:53:43.618398+00:00 1
44 h0rU Pathway all True go Gene Ontology 2023-05-10 https://data.bioontology.org/ontologies/GO/sub... e9845499eadaef2418f464cd7e9ac92e http://geneontology.org 2023-12-22 16:53:43.618432+00:00 1
46 fxHJ BFXPipeline all True lamin Bioinformatics Pipeline 1.0.0 s3://bionty-assets/bfxpipelines.json a7eff57a256994692fba46e0199ffc94 https://lamin.ai 2023-12-22 16:53:43.618500+00:00 1
47 chfO Drug all True dron Drug Ontology 2023-03-10 https://data.bioontology.org/ontologies/DRON/s... 75e86011158fae76bb46d96662a33ba3 https://bioportal.bioontology.org/ontologies/DRON 2023-12-22 16:53:43.618551+00:00 1
48 7JhT DevelopmentalStage human True hsapdv Human Developmental Stages 2020-03-10 http://aber-owl.net/media/ontologies/HSAPDV/11... 52181d59df84578ed69214a5cb614036 https://github.com/obophenotype/developmental-... 2023-12-22 16:53:43.618588+00:00 1
49 JIKv DevelopmentalStage mouse True mmusdv Mouse Developmental Stages 2020-03-10 http://aber-owl.net/media/ontologies/MMUSDV/9/... 5bef72395d853c7f65450e6c2a1fc653 https://github.com/obophenotype/developmental-... 2023-12-22 16:53:43.618623+00:00 1
50 clid Ethnicity human True hancestro Human Ancestry Ontology 3.0 https://github.com/EBISPOT/hancestro/raw/3.0/h... 76dd9efda9c2abd4bc32fc57c0b755dd https://github.com/EBISPOT/hancestro 2023-12-22 16:53:43.618658+00:00 1
51 rsbG BioSample all True ncbi NCBI BioSample attributes 2023-09 s3://bionty-assets/df_all__ncbi__2023-09__BioS... 918db9bd1734b97c596c67d9654a4126 https://www.ncbi.nlm.nih.gov/biosample/docs/at... 2023-12-22 16:53:43.618691+00:00 1
Hide code cell content
!lamin delete --force test-cell-marker
!rm -r test-cell-marker
💡 deleting instance testuser1/test-cell-marker
✅     deleted instance settings file: /home/runner/.lamin/instance--testuser1--test-cell-marker.env
✅     instance cache deleted
✅     deleted '.lndb' sqlite file
❗     consider manually deleting your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/test-cell-marker