scrna3/6 Jupyter Notebook lamindata

Query artifacts#

Here, we’ll query artifacts and inspect their metadata.

This guide can be skipped if you are only interested in how to leverage the overall dataset.

import lamindb as ln
import lnschema_bionty as lb
import anndata as ad
πŸ’‘ lamindb instance: testuser1/test-scrna
ln.track()
πŸ’‘ notebook imports: anndata==0.9.2 lamindb==0.64.2 lnschema_bionty==0.36.1
πŸ’‘ saved: Transform(uid='agayZTonayqAz8', name='Query artifacts', short_name='scrna3', version='0', type=notebook, updated_at=2023-12-22 16:56:12 UTC, created_by_id=1)
πŸ’‘ saved: Run(uid='aIIa6Ll02VsLGk2bJKD8', run_at=2023-12-22 16:56:12 UTC, transform_id=3, created_by_id=1)

Query artifacts by provenance metadata#

users = ln.User.lookup()
ln.Transform.filter(created_by=users.testuser1).search("scrna")
uid score
name
scRNA-seq Nv48yAceNSh8z8 90.0
Standardize and append a batch of data ManDYgmftZ8Cz8 45.0
Query artifacts agayZTonayqAz8 36.0
transform = ln.Transform.filter(uid="Nv48yAceNSh8z8").one()
ln.Artifact.filter(transform=transform).df()
uid storage_id key suffix accessor description version size hash hash_type n_objects n_observations transform_id run_id initial_version_id visibility key_is_virtual updated_at created_by_id
id
1 Nnw68SLvhQgFMBAnMMCe 1 scrna/conde22.h5ad .h5ad AnnData Human immune cells from Conde22 None 57612943 9sXda5E7BYiVoDOQkTC0KB sha1-fl None None 1 1 None 1 True 2023-12-22 16:55:39.771165+00:00 1

Query artifacts by biological metadata#

assays = lb.ExperimentalFactor.lookup()
organism = lb.Organism.lookup()
cell_types = lb.CellType.lookup()
query = ln.Artifact.filter(
    experimental_factors=assays.single_cell_rna_sequencing,
    organism=organism.human,
    cell_types=cell_types.gamma_delta_t_cell,
)
query.df()
uid storage_id key suffix accessor description version size hash hash_type n_objects n_observations transform_id run_id initial_version_id visibility key_is_virtual updated_at created_by_id
id
1 Nnw68SLvhQgFMBAnMMCe 1 scrna/conde22.h5ad .h5ad AnnData Human immune cells from Conde22 None 57612943 9sXda5E7BYiVoDOQkTC0KB sha1-fl None None 1 1 None 1 True 2023-12-22 16:55:39.771165+00:00 1

Inspect artifact metadata#

query_set = ln.Artifact.filter().all()

artifact1, artifact2 = query_set[0], query_set[1]
artifact1.describe()
Artifact(uid='Nnw68SLvhQgFMBAnMMCe', key='scrna/conde22.h5ad', suffix='.h5ad', accessor='AnnData', description='Human immune cells from Conde22', size=57612943, hash='9sXda5E7BYiVoDOQkTC0KB', hash_type='sha1-fl', visibility=1, key_is_virtual=True, updated_at=2023-12-22 16:55:39 UTC)

Provenance:
  πŸ—ƒοΈ storage: Storage(uid='4Pr4dBVo', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna', type='local', updated_at=2023-12-22 16:55:18 UTC, created_by_id=1)
  πŸ“” transform: Transform(uid='Nv48yAceNSh8z8', name='scRNA-seq', short_name='scrna', version='0', type='notebook', updated_at=2023-12-22 16:55:22 UTC, created_by_id=1)
  πŸ‘£ run: Run(uid='ElzFsV2oOOJ4AwZTIKXd', run_at=2023-12-22 16:55:22 UTC, transform_id=1, created_by_id=1)
  πŸ‘€ created_by: User(uid='DzTjkKse', handle='testuser1', name='Test User1', updated_at=2023-12-22 16:55:18 UTC)
  ⬇️ input_of (core.Run): ['2023-12-22 16:55:45 UTC']
Features:
  var: FeatureSet(uid='3yO9udhgk40tOrZceGC9', n=36390, type='number', registry='bionty.Gene', hash='rMZltwoBCMdVPVR8x6nJ', updated_at=2023-12-22 16:55:36 UTC, created_by_id=1)
    'MIR1302-2HG', 'FAM138A', 'OR4F5', 'None', 'None', 'None', 'None', 'None', 'None', 'None', 'OR4F29', 'None', 'OR4F16', 'None', 'LINC01409', 'FAM87B', 'LINC01128', 'LINC00115', 'FAM41C', 'None', ...
  obs: FeatureSet(uid='0HngcQZopPzGbZL3d8pT', n=4, registry='core.Feature', hash='EXQTQYCYNl0l1_OLBFOU', updated_at=2023-12-22 16:55:37 UTC, created_by_id=1)
    πŸ”— cell_type (32, bionty.CellType): 'classical monocyte', 'T follicular helper cell', 'memory B cell', 'alveolar macrophage', 'naive thymus-derived CD4-positive, alpha-beta T cell', 'effector memory CD8-positive, alpha-beta T cell, terminally differentiated', 'alpha-beta T cell', 'CD4-positive helper T cell', 'naive thymus-derived CD8-positive, alpha-beta T cell', 'macrophage', ...
    πŸ”— assay (4, bionty.ExperimentalFactor): 'single-cell RNA sequencing', '10x 3' v3', '10x 5' v2', '10x 5' v1'
    πŸ”— tissue (17, bionty.Tissue): 'blood', 'thoracic lymph node', 'spleen', 'lung', 'mesenteric lymph node', 'lamina propria', 'liver', 'jejunal epithelium', 'omentum', 'bone marrow', ...
    πŸ”— donor (12, core.ULabel): 'D496', '621B', 'A29', 'A36', 'A35', '637C', 'A52', 'A37', 'D503', '640C', ...
Labels:
  🏷️ organism (1, bionty.Organism): 'human'
  🏷️ tissues (17, bionty.Tissue): 'blood', 'thoracic lymph node', 'spleen', 'lung', 'mesenteric lymph node', 'lamina propria', 'liver', 'jejunal epithelium', 'omentum', 'bone marrow', ...
  🏷️ cell_types (32, bionty.CellType): 'classical monocyte', 'T follicular helper cell', 'memory B cell', 'alveolar macrophage', 'naive thymus-derived CD4-positive, alpha-beta T cell', 'effector memory CD8-positive, alpha-beta T cell, terminally differentiated', 'alpha-beta T cell', 'CD4-positive helper T cell', 'naive thymus-derived CD8-positive, alpha-beta T cell', 'macrophage', ...
  🏷️ experimental_factors (4, bionty.ExperimentalFactor): 'single-cell RNA sequencing', '10x 3' v3', '10x 5' v2', '10x 5' v1'
  🏷️ ulabels (12, core.ULabel): 'D496', '621B', 'A29', 'A36', 'A35', '637C', 'A52', 'A37', 'D503', '640C', ...
artifact1.view_flow()
_images/a40d70a3c9fbd539e145a96c8f22704f4e7ee4291a00fe9d64d27dbf85420d66.svg
artifact2.describe()
Artifact(uid='gUIlv4dU4IglKdM4cdct', suffix='.h5ad', accessor='AnnData', description='10x reference adata', size=853388, hash='eKH1ljAEh7Kd81-o2H4A7w', hash_type='md5', visibility=1, key_is_virtual=True, updated_at=2023-12-22 16:56:05 UTC)

Provenance:
  πŸ—ƒοΈ storage: Storage(uid='4Pr4dBVo', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna', type='local', updated_at=2023-12-22 16:55:18 UTC, created_by_id=1)
  πŸ“” transform: Transform(uid='ManDYgmftZ8Cz8', name='Standardize and append a batch of data', short_name='scrna2', version='0', type='notebook', updated_at=2023-12-22 16:55:45 UTC, created_by_id=1)
  πŸ‘£ run: Run(uid='O9AcqorQzSOcWWCfDof4', run_at=2023-12-22 16:55:45 UTC, transform_id=2, created_by_id=1)
  πŸ‘€ created_by: User(uid='DzTjkKse', handle='testuser1', name='Test User1', updated_at=2023-12-22 16:55:18 UTC)
Features:
  var: FeatureSet(uid='nMX2IMfUs8TU1n59Wyhf', n=749, type='number', registry='bionty.Gene', hash='ZL6ScVsUK3gvyaiIVPVr', updated_at=2023-12-22 16:56:05 UTC, created_by_id=1)
    'IL18', 'NPM3', 'S100A9', 'S100A8', 'CNN2', 'ARHGAP45', 'RNF34', 'GPX4', 'S100A6', 'ADISSP', 'S100A4', 'FAM174C', 'SIT1', 'CCDC107', 'RSL1D1', 'TLN1', 'HES4', 'TNFRSF17', 'PCNA', 'RAB13', ...
  obs: FeatureSet(uid='OnPEcfePDEXo23pTgV2F', n=1, registry='core.Feature', hash='bqSXai02lq2zMp7z8MHE', updated_at=2023-12-22 16:56:05 UTC, created_by_id=1)
    πŸ”— cell_type (9, bionty.CellType): 'dendritic cell', 'CD38-positive naive B cell', 'B cell, CD19-positive', 'effector memory CD4-positive, alpha-beta T cell, terminally differentiated', 'CD16-positive, CD56-dim natural killer cell, human', 'CD4-positive, alpha-beta T cell', 'cytotoxic T cell', 'CD8-positive, CD25-positive, alpha-beta regulatory T cell', 'CD14-positive, CD16-negative classical monocyte'
  external: FeatureSet(uid='5VXX6OsehOQYUZFMvghG', n=2, registry='core.Feature', hash='07M1fkPNRSJ-HVFvwtX6', updated_at=2023-12-22 16:56:05 UTC, created_by_id=1)
    πŸ”— assay (1, bionty.ExperimentalFactor): 'single-cell RNA sequencing'
    πŸ”— organism (1, bionty.Organism): 'human'
Labels:
  🏷️ organism (1, bionty.Organism): 'human'
  🏷️ cell_types (9, bionty.CellType): 'dendritic cell', 'CD38-positive naive B cell', 'B cell, CD19-positive', 'effector memory CD4-positive, alpha-beta T cell, terminally differentiated', 'CD16-positive, CD56-dim natural killer cell, human', 'CD4-positive, alpha-beta T cell', 'cytotoxic T cell', 'CD8-positive, CD25-positive, alpha-beta regulatory T cell', 'CD14-positive, CD16-negative classical monocyte'
  🏷️ experimental_factors (1, bionty.ExperimentalFactor): 'single-cell RNA sequencing'
artifact2.view_flow()
_images/5e24fbb26af0bacab5f2f249fee11c7b8d8cb9f10f4a98fdae4990efec3816c1.svg

Compare features#

Here we compute shared genes:

artifact1_genes = artifact1.features["var"]
artifact2_genes = artifact2.features["var"]

shared_genes = artifact1_genes & artifact2_genes
len(shared_genes)
749
shared_genes.list("symbol")[:10]
['HES4',
 'TNFRSF4',
 'SSU72',
 'PARK7',
 'RBP7',
 'SRM',
 'MAD2L2',
 'AGTRAP',
 'TNFRSF1B',
 'EFHD2']

Compare cell types#

artifact1_celltypes = artifact1.cell_types.all()
artifact2_celltypes = artifact2.cell_types.all()

shared_celltypes = artifact1_celltypes & artifact2_celltypes
shared_celltypes_names = shared_celltypes.list("name")
shared_celltypes_names
['CD16-positive, CD56-dim natural killer cell, human']

Load the individual artifacts#

We could either load the artifacts into memory or access them in backed mode through .backed() to lazily load their content.

Let’s load them into memory:

adata1 = artifact1.load()
adata2 = artifact2.load()

We can now subset the two datasets by shared cell types:

adata1_subset = adata1[adata1.obs["cell_type"].isin(shared_celltypes_names)]
adata2_subset = adata2[adata2.obs["cell_type"].isin(shared_celltypes_names)]